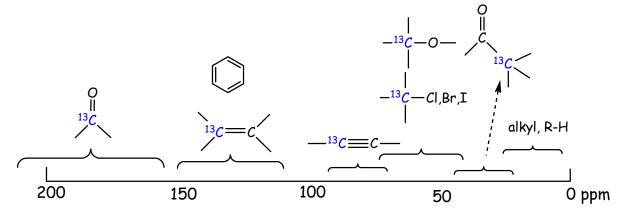
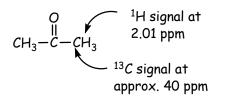
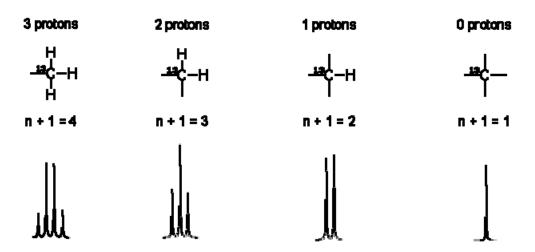

The ¹H NMR spectrum provides three pieces of information:


- 1. chemical shift- position of peak on the x-axis- shielding and deshielding
- 2. area under the peak (integration)- indicates the number of hydrogens in resonance at that frequency
- 3. signal splitting- multiplicity of signal- indicates the number of hydrogens on adjacent carbon atoms

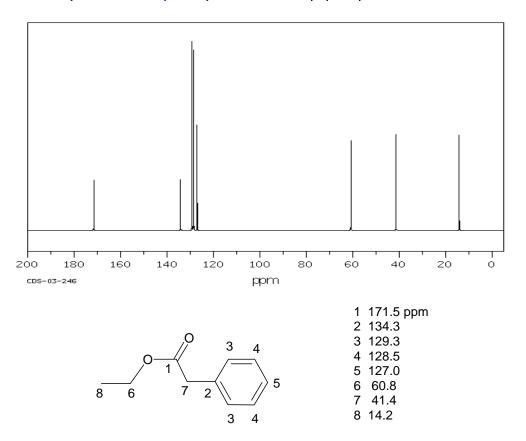

Correlation Tables for ¹H chemical shifts:

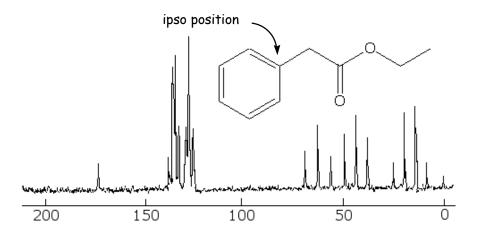
Correlation Tables for ¹³C chemical shifts:


Helpful observation: The chemical shifts for ¹³C nuclei are 15–20 times larger than the corresponding ¹H nuclei frequencies. Example: acetone. Protons next to the carbonyl observed at 2.01 ppm. The ¹³C signal for the carbon next to the carbonyl is 2.01 (x 20) =40 ppm.

Chemical shifts for carbonyl functional groups (ppm)

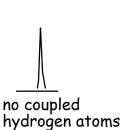
ketones	220-200	amides	180-160
α, β -unsaturated ketones	210-190	acid chlorides	180-160
aldehydes	205-190	anhydrides	175-150
carboxylic acids	185-165	nitriles	120-115
esters	185-160		


Spectra which show the spin-spin splitting, or coupling, <u>between carbon-13 and the protons</u> directly attached to it are called **proton-coupled spectra** or **nondecoupled spectra**.


Coupled and decoupled Spectra

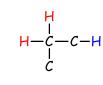
Spectra in which the protons are decoupled from the C-13 nuclei are called **proton-decoupled** spectra or simply **decoupled spectra**. Decoupled spectra show <u>singlets for each non-equivalent</u> carbon-13 nucleus.

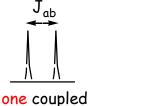
Here is the proton-decoupled spectrum of ethyl phenyl acetate. Nice and clean!


Here is the **proton-coupled spectrum** for the same compound, ethyl phenyl acetate. Notice the two triplets and a quartet for the sp³ carbons, whereas the aromatic carbons show non-first order splitting. Also, the carbonyl carbon and the **ipso** ring carbon both have a low intensity in both spectra (no hydrogens attached to these carbons).

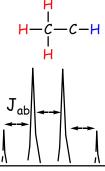
Spin-Spin Coupling

Saturated systems:

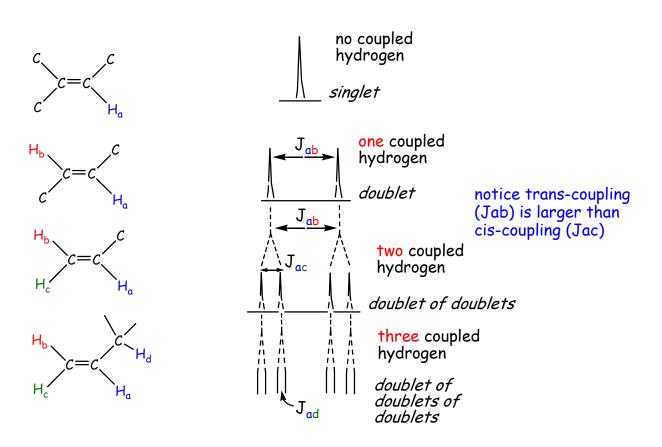

singlet


hydrogen atoms

doublet


C-

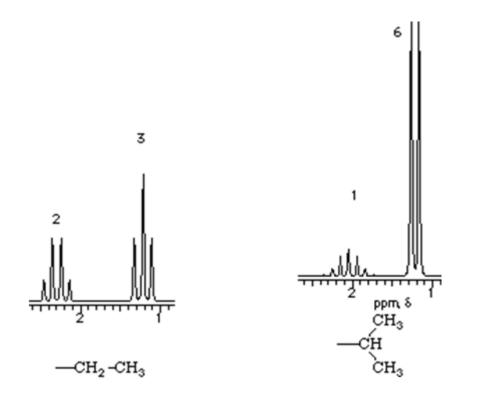
ab



two coupled hydrogen atoms *triplet*

three coupled hydrogen atoms *quartet*

Vinyl systems:



Common Coupling Patterns

Ethyl group: a quartet and a triplet in the ratio 2:3

The chemical shift of the CH₂ group depends on the attached substituent and ranges from: $\delta \approx 4$ (for oxygen) to $\delta \approx 2$ (for a carbonyl).

Isopropyl group: a septet (7 peaks) and a doublet in the ratio 1:6 The chemical shift of the CH₂ group depends on the attached substituent

